Automatic nuclei segmentations in near-isotropic, reconstructed volume electron microscopy (FIB-SEM) of mouse Meissner corpuscle (double-innervated) (jrc_mus-meissner-corpuscle-2) model
Model description: Cellpose 3.0.9 was trained on nuclei from 27 2D slices from jrc_mus-meissner-corpuscle-2.
Architecture: Cellpose 3.0.9
Number of parameters: 6600845
Input voxel size (nm): 128 x 128 x 128 (X, Y, Z)
Output voxel size (nm): 128 x 128 x 128 (X, Y, Z)
Classes trained on: Nucleus
Training steps: 27000
Epochs: 1000
GPU: NVIDIA TITAN RTX
RAM: 251.0 GiB
Model wall time (sec): 567.55
Software: Cellpose 3.0.9
Software DOI: https://doi.org/10.1038/s41592-022-01663-4
Source dataset (EM) ID: jrc_mus-meissner-corpuscle-2
Source dataset (EM) DOI: https://doi.org/10.25378/janelia.23969106
Generated dataset DOI: https://doi.org/10.25378/janelia.26506543
Model URL: https://data.janelia.org/UAlMG7
Github repo: https://github.com/janelia-cellmap/cellmap-models
Visualization website: https://openorganelle.janelia.org/datasets/jrc_mus-meissner-corpuscle-2